Cllmate Change and Ecosétem Sehiieé in
a Changing Climate

Andreas Fischlin

First coordinating lead author (CLA) IPCC SAR, AR4, Review Editor (RE) IPCC TAR, AR5, Reviewer of
IPCC SAR, TAR, AR4, AR5, SR LULUCF and lead author (LA) GPG LULUCF

Co-faclitator of industrialized countries of the «Structured Expert Dialogue» and member of Swiss
delegation for climate negotiations (UNFCCC)

ETH Zurich, D-USYS, IBP, Head of Terrestrial Systems Ecology

Department of Environmental Systems Science, Terrestrial Systems Ecology, IBP @ Prof. Dr. Andreas Fischlin | 23.Jun.2015



Please take home:

The physical science basis is very robust
e Human caused warming is clear

e Risks can be managed via mitigation and
up to some limits via adaptation

e Unless emissions are radically and soon
reduced, warming will impact soon some ecosystems
significantly, e.g. coral reefs or NH sea ice biome

e Unmitigated climate change as currently projected will P2
exceed the adaptive capacities of most ecosystems and
thus would come with most severe impacts on their

structure, functioning, and services




Part 1 - Climate Change

e Observations
o Attribution

e Projections

e Implications




Observations




Warming in the instrumental period
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Warming in the instrumental period
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Warming of climate system is unequivocal

Each of the last three decades has been successively warmer at
the Earth’s surface than any preceding decade since 1850.

In the Northern Hemisphere, 1983-2012 was likely the warmest
30-year period of the last 1400 years (medium confidence).
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Where did the heat go?

Ocean warming dominates
the increase in energy stored
in the climate system,
accounting for more than
90% of the energy
accumulated between 1971
and 2010 (high confidence).

It is virtually certain that the
upper ocean (0—700 m)
warmed from 1971 to 2010,
and it likely warmed between
the 1870s and 1971.

IPCC, 2014. Synthesis
Report, Figure SPM.10
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The last 15 years (alleged “hiatus”)
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1970

WMO 2015, kombinierte
Daten aus NOAA-NASA
-UK Datensatzen
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Ocean show clear trends of acidification
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The ocean has
absorbed about
30% of the
emitted
anthropogenic
carbon dioxide,
causing ocean
acidification.
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Some extreme events have become more frequent
Ex.: Summer Temperatures in Europe
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Attribution



Globally averaged greenhouse gas concentrations
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Contributions to observed surface temperature
change over the period 1951-2010

OBSERVED WARMING

Greenhouse gases

I I Other anthropogenic forcings

Combined anthropogenic forcings

Natural forcings

IPCC, 2014. Synthesis Natural internal variability
Report, Figure SPM.3
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Contributions to observed surface temperature
change over the period 1951-2010
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Human influence on the
climate system is clear.

This is evident from the
Increasing greenhouse gas
concentrations in the
atmosphere, positive radiative
forcing, observed warming,
and understanding of the
climate system.
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Human influence on the climate system is clear

Human influence has been detected in warming of the
atmosphere and the ocean, in changes in the global water cycle,
in reductions in snow and ice, in global mean sea level rise, and in
changes in some climate extremes. This evidence for human
influence has grown since ARA4.

It is extremely likely that human influence has been the
dominant cause of the observed warming since the mid-20th

century.

IPCC, 2013. SPM WG
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Projections



What emissions do

Continued emissions of greenhouse gases will cause further
warming and changes in all components of the climate system.
Limiting climate change will require substantial and sustained
reductions of greenhouse gas emissions.
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Future: Climate scenarios
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Figure 12.5: global annual mean surface air temperature anomalies (relative to 1986—2005) from CMIP5 concentration-driven (IPCC, 2013. AR5 WGI)
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Projected temperature changes

Change in average surface temperature (1986-2005 to 2081-2100)

IPCC, 2014. Synthesis Report, Figure SPM.7
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Implications



Arctic September sea ice extent
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Global ocean surface pH
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Global mean sea level rise
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Part 2 - Ecosystem services in a
changing climate

e On ecosystem services
e Impacts framework

e Managing the
risks




On ecosystem
services




Cultural Services

e Recreational
® Educational
e Spiritual

¢ C-sequestration
e Climate

® Flood, erosion
e Air, water puri-

a
i

*

SupjaE

® Primary & other productions
® Soil formation
* Nutrient cycling
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Impacts
framework



Risk Framework - IPCC AR5 WGII

CLIMATE

Natural
Variability

Anthropogenic
Climate Change

IPCC, 2014, AR5 WG, Figure SPM.1
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Risk Framework - IPCC AR5 WGII
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Risk Framework - IPCC AR5 WGII
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Risk Framework - IPCC AR5 WGII
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Risk Framework - IPCC AR5 WGII
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Risk Framework - IPCC AR5 WGII
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Impacts and Adaptation

Level of risk & potential for adaptation

Potential for additional adaptation

. toreducerisk
M —

t t
Risk level with Risk level with
high adaptation  current adaptation

IPCC, 2014. Summary for Policy Makers AR5 WGII. Assessmen t Box SPM.2 Table 1 Europe, p. 22
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Risks assessed for all regions, sectors

IPCC, 2014. SYR Summary for
Policy Makers AR5, Figure SPM.8
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Risks assessed for all regions, sectors

IPCC, 2014. SYR Summary for

Policy Makers AR5, Figure SPM.8
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Risks assessed for all regions, sectors

IPCC, 2014. SYR Summary for
Policy Makers AR5, Figure SPM.8
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Risks assessed for all regions, sectors

IPCC, 2014. SYR Summary for
Policy Makers AR5, Figure SPM.8
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Risks assessed for all regions, sectors

IPCC, 2014. SYR Summary for
Policy Makers AR5, Figure SPM.8
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Marine ecosystems among most vulnerable
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Marine ecosystems among most vulnerable

Ocean acidification and warming
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IPCC, 2014. SYR AR5, Figure 2.5
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Risk for terrestrial and freshwater species
impacted by the rate of warming

IPCC, 2014. SYR
AR5, Figure 2.5
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Managing the
risks




Dangerous Anthropogenic Interference (DAI)
vs. global mean warming (°C)

Reasons 6
of
Concern

Future

Know-
ledge

Global mean warming (°C) over preindustrial levels
w
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However, current emission trends

Total annual anthropogenic greenhouse gas emissions by groups of gases, 1970-2010
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Near term vs. deferred mitigation

Before 2030
GHG Emissions Pathways [GtCO,eq/yr]

60

55

50

45

40

LJmmediate action”

35

30 |

Annual GHG
75 | Emissionsin 2030

B <50 GtCO,eq
20

2005 2010 2015 2020 2025 2030

Department of Environmental Systems Science, Terrestrial Systems Ecology, IBP

PN

Fischlin et al., 2015. SED
Report Figure 8

Prof. Dr. Andreas Fischlin | 23.Jun.2015



Near term vs. deferred mitigation

Report Figure 8
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Near term vs. deferred mitigation
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Near term vs. deferred mitigation
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Near term vs. deferred mitigation

DEIUIE ZUDV
GHG Emissions Pathways [GtCO,eq/yr]

Cancuin P
Pledges -~

60 l y

55

50

45

40 >

35

30

Annual GHG
25 | Emissions in 2030

B <50 GtCO,eq

20 B >55 GtCOzeq

2005 2010 2015 2020 2025 2030

Department of Environmental Systems Science, Terrestrial Systems Ecology, IBP

RILlEl ZUdDV

Rate of CO, Emission Change [%/yr]

Fischlin et al., 2015. SED
Report Figure 8

Share of Low Carbon Energy [%]

6 100
Past 1900-2010
3
et — 2000-2010 80
0
Future 2030-2050 =
= S
60 B
+ + |
3 | {___ + BB
-6 i —_— 40 —
9 =
20 —
— ARS Scenario Range —
-12 ; i pr—
— Interquartile Range and Median 2010
of Model Comparisons with
2030 Targets
2030 2050 2100 2030 2050 2100

.

Prof. Dr. Andreas Fischlin | 23.Jun.2015



BB
TOUSHER EPA STANDARDS foR
AMERICA!S POWER PLANT
EMISSIONS -

Fitz Simmons - www.cagle.com

Department of Environmental Systems Science, Terrestrial Systems Ecology, IBP Prof. Dr. Andreas Fischlin | 23.Jun.2015




Adaptation Is necessary: E.g. Ecosystem Based
Adaptation EBA

Climate mitigation ~ Climate change impacts

Ecosystem protection
and restoration
Degradation of S .
ecological processes Biodiversity retention,
ecosystem resilience, and

: and loss of biodiversity
Sustainable reduced vulnerability

economies with Increased pressure Loss of
reduced risk of on ecosystems/ ecosystem
natural capital services

climate impacts l
‘ , Sustained ecosystem
Loss of human services delivery
well-being
Increase in human well-being 4—)

With ecosystem-based IPCC, 2014. WG|, Cross-chapter box compendium Without ecosystem-based
adaptation adaptation
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Please take home:

The physical science basis is very robust
e Human caused warming is clear

e Risks can be managed via mitigation and
up to some limits via adaptation

e Unless emissions are radically and soon
reduced, warming will impact soon some ecosystems
significantly, e.g. coral reefs or NH sea ice biome

e Unmitigated climate change as currently projected will P2
exceed the adaptive capacities of most ecosystems and
thus would come with most severe impacts on their

structure, functioning, and services




Thanks for your
attention!
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