

Universities for Expo 2015 Impacts of Climate Change on Ecosystem Services Politecnico di Milano - June 23, 2015

Mitigation of greenhouse gas emissions

prof. Stefano Consonni Department of Energy - Politecnico di Milano

Energy and human development

Mitigation of GHG emissions – S. Consonni, 23 June 2015

Energy and human development

fonte: Zuttel et al., 2010 - Hydrogen: the future energy carrier

3

World primary energy demand

New Policies scenario

Source: World Energy Outlook 2014, International Energy Agency

Primary energy consumption per capita (2013)⁶

Source: BP Statistical Review 2014

World average ~ 12.5 GToe / 7 billion people ~ 1.8 Toe per capita

Mitigation of GHG emissions – S. Consonni, 23 June 2015

The expanding role of developing countries

Mitigation of GHG emissions – S. Consonni, 23 June 2015

Overwhelming role of fossil fuels: in 2010, 81% of total

New Policies scenario

	1990	2010	2015	2020	2030	2035	2010-35*					
Coal	2 231	3 474	3 945	4 082	4 180	4 218	0.8%					
Oil	3 230	4 113	4 352	4 457	4 578	4 656	0.5%					
Gas	1 668	2 740	2 993	3 266	3 820	4 106	1.6%					
Nuclear	526	719	751	898	1 073	1 138	1.9%					
Hydro	184	295	340	388	458	488	2.0%					
Bioenergy**	903	1 277	1 408	1 532	1 755	1 881	1.6%					
Other renewables	36	112	200	299	554	710	7.7%					
Total	8 779	12 730	13 989	14 922	16 417	17 197	1.2%					
*Compound average annual growth rate. ** Includes traditional and modern biomass uses. All data in Million Toe (except growth rate)												
Bioenergy dominates 35% increase over 25 years												
			Source: World Energy Outlook 2012 International Energy Agency									

Mitigation of GHG emissions – S. Consonni, 23 June 2015

World hard coal reserves at end of 2010

Source: World Energy Outlook **2012**, International Energy Agency

$$\frac{R}{P} [years] = \frac{Reserves [barrels]}{Production [barrels/year]}$$

- The R/P ratio tells us for how many years we can maintain current production until reserves are depleted
- In a "STATIC" world where reserves, prices and production remain constant, the R/P ratio would progressively decrease year by year
- But in pratice the R/P ratio changes due to changes in:
 - Reserves
 - Prices
 - Production Mitigation of Shoremssions – S. Consonni, 23 June 2015

Evolution of proved oil reserves

Source: BP Statistical Review 2014

Mitigation of GHG emissions – S. Consonni, 23 June 2015

Average IEA crude import price - by scenario ¹²

Un-conventional sources: Oil sands

Mitigation of GHG emissions – S. Consonni, 23 June 2015

Schematic geology of natural gas resources

Mitigation of GHG emissions – S. Consonni, 23 June 2015

POLITECNICO DI MILANO

	Coal* (bil	lion tonnes)	Natural	gas (tcm)	Oil (billion barrels)			
	Proven reserves	Recoverable resources	Proven reserves	Recoverable resources	Proven reserves	Recoverable resources		
OECD	427	10 657	28	193	244	2 345		
Non-OECD	576	10 551	205	597	1 450	3 526		
World	1 004	21 208	232	790	1 694	5 871		
Share of non-OECD	57%	F0%	88%	76%	86%	60%		
R/P ratio (years)	132	2 780	71	241	55	189		
Ψ. 	(

* For coal, the data are for 2010.

Notes: R/P ratio = Reserves-to-production ratio based on 2011 levels of production. Resources are remaining technically recoverable resources.

Sources: BGR (2011); O&GJ (2011); USGS (2000); USGS (2012a); USGS (2012b); IEA databases and analysis.

Source: World Energy Outlook **2012**, International Energy Agency

- When considering the contribution of unconventional sources and new technologies, the reserves of oil and natural gas appear capable of meeting world demand well within the XXII century
- Much longer prospects for coal
- Established, efficient and reliable allow the production of useful energy from fossil fuels at low cost
- In summary, the use of fossil fuels does NOT raise great concerns regarding their availability - at least for this century - nor about the technologies needed to use them
- Concerns are mainly related to ENVIRONMENTAL IMPLICATIONS

Impact on Environment: global scale

- Main product of combustion process
- Basic product of biological processes: after being carried by blood, CO₂ is transferred to the respiratory system by lungs and it is eventually exhaled
- Basic input for chlorophyll photosynthesis
- Widely used in the food industry (e.g. mineral water)
- Due to concerns on <u>Climate Changes</u> it may be considered a pollutant
- Being heavier than air, when stratified it can cause asphyxia

The five routes for the long term

World energy-related CO₂ emissions - by scenario

Mitigation of GHG emissions – S. Consonni, 23 June 2015

The Wedges approach: stabilization triangle

Graphic courtesy of Rob Socolow

Mitigation of GHG emissions – S. Consonni, 23 June 2015

POLITECNICO DI MILANO

Graphic courtesy of Rob Socolow

Mitigation of GHG emissions – S. Consonni, 23 June 2015

A "wedge" is a strategy to reduce carbon emissions that grows in 50 years from zero to 4 $GtCO_2/yr$. Such strategy accounts for <u>1/8 of the stabilization effort</u>

Graphic courtesy of Rob Socolow

Efficient use of fuel of Light Duty Vehicles (LDV)

Number of LDVs circulating in 2015 is \approx 1 billion At 12 km per liter, driving a LDV for 12,000 km emits \approx 2,5 t of CO₂ In 2065, estimated 3 billion LDVs in 2065 will emit 7,5 Gt of CO₂

Effort needed by 2065 for 1 wedge (-4 Gt):

3 billion LDVs driven 12,000 km/yr at **not 12** but **25 km per liter** 3 billion LDVs at 10 l/100km, driven **not 12,000** but **5,700 km/yr**

NOTE: 3 billion cars at **25 km/l AND driven 5,700 km/yr**: \approx 1.5 wedges --> effects do not add up !

660 GW of these coal-fired power stations emit 4 Gton_c/yr

Mitigation of GHG emissions – S. Conso

Effort needed by 2065 for one wedge:

5300 GW_{peak} **if displacing coal** (x 6 for intermittency + 1 to compensate storage losses)

more than twice if displacing nat gas

installed power in Italy in 2013: 18 GW_{peak}

at 7 m² of solar cells per kW_{peak} (avg efficiency 14%) the generation of 5300 GW_{peak} would require \approx 33000 km² of PV cells

Mitigation of GHG emissions – S. Consonni, 23 June 2015

Growth of photovoltaic power

At end of 2014 installed power has reached 177 GW a bit more than 3% of the power needed to make a wedge by displacing coal-fired power

Source: IEA Technology Roadmap Solar PV Energy - 2014 edition

Effort needed by 2065 for one wedge:

2600 GW_{peak} **if displacing coal** (x 3,5 for intermittency + 0,5 to compensate storage losses)

more than twice if displacing nat gas

in 2011 installed power was 240 GW

400,000 MW		Gr	'OW '	th o	f wi	nd	pow	er c	apa	city					369,553
350,000														318.596	
300,000													- 283,068		
250,000															
200,000											. 197,953				
150,000									- 120 725	159,089					
100,000							72 050	93,911	120,725 						
50.000		- 22 000	31.100 -	. 39,431	47,620	59,091									
7,600 10,200	13,600 17,400	23,900													
1997 1998	1999 2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014
Country	Country MW					%	SHARE								
PR China*		114,7	763				31.0								
USA		65,8	379		17.8 IO make a wedge, capa							pac	ity		
Germany		39,1	65		<u>10.6</u> installed at end of 2014										
Spain		22,987				6.2 (370 GW) must increase I							hv		
India		22,465				$\frac{6.1}{2}$ a factor of 7							.,		
United Kingdom		12,440													
Canada		9,694				2.6									
France		9,285				2.5									
Italy		8,663					2.3								
Brazil**		5,939					1.6	1.6							
Rest of the world		58,2	275				15.8	- Courses Clobal Mind Engine Courseil 2014 statistic							
Total TOP 10		311,279					84.2	2							ausucs
World Total	369,553						100	POLITECNICO DI MILAN							

Electricity production costs

Source: World Energy Outlook 2014, International Energy Agency

- 1) In Italy, expenditure for incentives to:
 - hydro
 - biomass
 - wind
 - geothermal

has nearly reached the cap of **5.8** billion Euros/yr

- 2) In 2015, incentives to PV will approach 7 billion Euros, bringing total incentives to about 12.5 billion Euros
- 3) The nearly 7 billion Euros of incentives for PV avoid the emission of about 10 million tons of CO2, for a specific cost of 700 € per ton avoided
- 4) The 5.8 billion of incentives for other renewables avoid the emission of about 25 million tons of CO2, for a specific cost of 230 € per ton avoided

CCS: Capture + Transport + Storage of \mathbf{CO}_2

Mitigation of GHG emissions – S. Consonni, 23 June 2015

The peculiar role of Carbon Capture & Storage

- CCS gives the possibility to DECOUPLE the use of fossil fuels from CO₂ emissions
- Given:
 - the overwhelming dominance of fossil fuels
 - the sheer cost of the energy infrastructure
 - the time and the resources needed to change the current situation
 - the costs and the many issues still raised by renwable sources

the shift from fossil sources to low-carbon-emission sources (renewables / nuclear) REQUIRES TIME

• CCS can give us the time we need

Sleipner (North Sea)

Mitigation of GHG emissions – S. Consonni, 23 June 2015

- Stabilizing and reducing GHG emissions poses daunting challenges
- The sheer size of the job to be done may leave us in despair, but ...
- there are reasons for optimism:
 - the world energy system is still very inefficient
 - the same for incentives / carbon tax schemes
 - the same for international cooperation
 - we do have degrees of freedom
 - most of the 2065 physical plants is not yet built
 - human ingenuity may bring further options

New Policies scenario

*The emissions savings compared with the emissions that would have been generated for the projected level of electricity generation were there no change in the mix of fuels and technologies, and no change in the efficiency of thermal generating plants after 2009.

Source: World Energy Outlook 2011, International Energy Agency

Thank you for your attention !

www.leap.polimi.it

Mitigation of GHG emissions – S. Consonni, 23 June 2015